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3. MODULAR MODEL 

This study proposes to use the modular model SOM and MLP. 
Here the data sets are normalised to fall in the range [0-1]. 
After being normalised, the input data are inserted in the 
SOM, to be separated into 4 groups then these groups are 
included in an MLP and finally the network output is tested. 
After being normalised, the input data are inserted in the 
SOM, to be separated into 4 groups then these groups are 
included in an MLP and finally the network output is tested. 
For training in MLP, only 75% of the sequential data sets are 
used to train the network and the remaining 25% are used to 
test the network. 

 

Fig. 2: Neural Network Model for flood forecasting 

Three performance measures used to evaluate the models are 
root mean square error (RMSE), correlation coefficient 
(r),coefficient of efficiency (CE). 

N 21RMSE = ( - )y ŷt tNt=1

- )( - )ˆ ˆ(y y y yt t t tr =
2 2- ) ( - )ˆ ˆ(y y y yt t t t

N 2- )ˆ(y yt tt=1CE =1- N 2- )ˆ ˆ(y yt tt=1
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Where, ŷ t =forecasted value, y t =observed value, y t =mean 

of observed value, ŷ t =mean of forecasted value,N=number of 

observation. 

4. RESULTS AND DISCUSSION 

Performance results in forecasting the test series with 3-hour 
and 6-hour are summarized in Table 1. The size of the mean 
square error (RMSE) can be used to determine how well the 
network output fits the desired output. The correlation 

coefficient is confined to the range [-1, 1]. Also the value of 
CE can range from −∞ to 1. An efficiency of 1 (CE = 1) 
corresponds to a perfect match of modeled discharge to the 
observed data. An efficiency of 0 (CE = 0) indicates that the 
model predictions are as accurate as the mean of the observed 
data, whereas efficiency less than zero (E < 0) occurs when 
the observed mean is a better predictor than the model.  

Table 1: Network performance measure forecasting  
concurrent flow rates at 3-hour ahead. 

Performance Index Name of Gauge Stations 
Fulertol Dholai Moniarkhal 

RMSE(normalised) 0.0055 0.0032 0.0086 
r 0.9940 0.3027 0.9857 

CE 0.9875 -2.3056 0.9636 

 
Table 2: Network performance measure forecasting  

concurrent flow rates at 6-hour ahead. 

Performance Index Name of Gauge Stations 
Fulertol Dholai Moniarkhal 

RMSE(normalised) 0.0071 0.0014 0.0081 
r 0.9921 0.6021 0.9929 

CE 0.9794 0.3414 0.9679 
 

Fig. 3: Observed and 3-h ahead forecasted flow at Fulertol 
 

Fig. 4: Observed and 3-h ahead forecasted flow at Dholai 
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Fig. 5: Observed and 3-h ahead forecasted flow at Moniarkhal 

Fig. 6: Observed and 6-h ahead forecasted flow at Fulertol 

Fig. 7: Observed and 6-h ahead forecasted flow at Dholai 
 

Fig. 8: Observed and 6-h ahead forecasted flow at Moniarkhal 

5. CONCLUSION 

In this paper, the application of ANN has been successfully 
demonstrated using modular model SOM and MLP for flood 
forecasting in Barak river system. It has been observed that 
this modular model is suitable for forecasting concurrent flows 
in a river system where flows from different river reaches 
draining water from different watersheds with variety of 
characteristics unite downstream contributing to a common 
flow. In the present study, the forecasting of concurrent flows 
is made for 3-hour and 6-hour ahead . But, a higher lead time 
may also be investigated further to make the forecasting more 
useful. 
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